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ABSTRACT

This study is concerned with the stability of random systems,

that is, systems whose internal characteristics are governed by prob-

ability laws.

Concepts of stability appropriate to random differential systems

are formulated and discussed. Precise definitions of stability are

stated and theorems interrelating these definitions are proven. Some

particular types of stability investigated are, in the mean norm, in

the ith moment, in probability, almost sure, and almost uniform-in- w.

1 . Particular attention is focused on the random linear (vector) differ-

ential equation with piecewise constant parameters:

ic= Akx, t k l _-t<  t k , k = 1, 2, . .

Two statistical structures are studied:

(a) (Ak (tk-tk.1)) is an independent, identically distributed,

random process;

(b) {Ak(tk-tk-l)} is a finite Markov chain.

The ith moment of the solutions is obtained explicitly and is studied

with respect to asymptotic behavior, and with respect to the set struc-

ture of the Markov chain in case (b)" Sufficient conditions for exponen-

tial asymptotic stability in the ith moment are derived. (In case (a),

these conditions are also necessary. ) It is shown that if i is even, then

these sufficient conditions also imply almost sure asymptotic stability.

For random linear systems, it is shown that if the trivial solution

of the homogeneous equation is exponentially asymptotically stable in

the mean norm, then certain stochastic equivalents of "bounded output

to every bounded input" are true.

With minor modifications, all of the above results are equally

applicable to random difference equations.
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I. INTRODUCTION AND SUMMARY

1. 1 General Introduction

By a random system one understands here a system some or all

of whose internal characteristics are governed by probability laws.

More precisely, it is assumed that the unforced system can be repre-

sented by an ensemble of equations indexed by the element w of a

nrobability space. Thus, for example, the system may have a repre-

sentation as a linear differential equation with random processes as

coefficients. This work is concerned with the stability of systems de-

scribed by random differential or difference equations. The problems

of measurement, identification and optimization are not touched upon.

A variety of physical situations can be represented by random

differential equations. Two examples in the field of systems are:

(i) an adaptive system which compensates for effects of an external

random disturbance; and (ii) a control system whose parameters are

undergoing noise modulation. An illustration of a random parameter

is the gain of the control surface of an aircraft in flight through a

medium, possibly turbulent, of rapidly changing and incompletely

known characteristics. In the field of circuits, lumped networks con-

taining randomly varying elements can be described by random differ-

ential equations; likewise, long transmission lines with characteristics
1

that are nonuniform along the length of the line. Finally, problems

of wave propagation and scattering in a random medium also lend them-

selves to a random differential equation representation. 2

Random difference equations arise in most of the above situations

if the coefficients of the equations are random but piecewise constant

in the independent variable. 3,4 They occur also in the field of quan-

tum mechanics in the study of energy levels in random lattices. A

final example is the area of randomly sampled systems, that is,

sampled-data systems whose sampling intervals are random vari-
ables. 6 The random sampling may result, for instance, from



economic considerations, as in the time sharing of a digital computer

that controls several processes; from requirements of secrecy and

anti-jam protection, as in military communication systems; from un-

avoidable perturbations on the nominal period of a "periodically"

sampled system. Finally, there are situations which though not

involving random sampling per se, can be fermulated in terms of a

sampler which "skips" or fails to operate in some random manner.

Two such examples are data transmission links and scan radars,

where the received data may be rejected at some time instants be-

cause of excessive noise.

1. 2 Some Previous Work on the Stability of Random Systems

For random linear systems with continuous parameter variations,

some results are available. For first-order systems Rosenbloom 7

has expressed the output moments in terms of the characteristic func-

tion of the indefinite time integral of the parameter process; he shows

in particular that if the parameter process is stationary and Gaussian,

then for a step input the first and second output moments may become

unbounded, whereas the output approaches one in probability, as t-Na.
8

Tikhonov has considered the first-order case where the input and

parameter processes are jointly Gaussian. The random linear differ-
ential system containing one purely random coefficient has been stud-

ied in some detail by Samuels and Eringen. 1 Samuels9 has further
developed the theory and extended it to systems containing one narrow-

band random parameter. He has considered also linear systems with

dependent parameter processes and an independent input and has ar-

rived at specific results in some special cases. Bergen10 has also

studied the linear differential system containing only one purely ran-

dom coefficient, and has found necessary and sufficient conditions

for the mean square error to remain bounded when the system is

excited by an independent Input. Zadeh 11 has investigated a very
general class of random linear systems admitting of a certain inte-

gral representation, and has demonstrated an integral relation
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between the output covariance, and the input ad "system" covariance,

similar to that for determiniNtic linear systems.

Bertram and Sarackik 13 have extended "Lyapunovs Second Method"

to random systems. By working with the expectation of the total time

derivative of the Lyapunov function along the system trajectories and

measuring stability in the sense of the mean norm, they have arrived

at theorems analogous to those in the deterministic came.

For discrete random linear systems (and continuous systems with

piecewise constant parameters), the problem consists of studying the

behavior of a given initial state vector undergoing a succession of ran-

dom linear transformations. Kalman 6 derived the necessary and suf-

ficient conditionis for mean square stability of an nth-order randomly

sampled system whose sampling intervals form a sequence of indepen-

dent, identically distributed, random variables. For the random linear

ntk-order system with piecewise constant parameters:

x- Akx, tk. 1 < t <t k , k= 1, 41, ... , Bergen 3 has found necessary and

sufficient conditions for asymptotic stability in the second moment when

{Ak) is a deterministic sequence of the form {B, C, B, C,... ) and

{tk-tk.l) is an independent, identically distributed, random sequence.
4

Tkis author has investigated the asymptotic stability in the ith moment

for the case where {Ak(tk-tk-l) } is a finite Markov chain (see Chaps.

TI, IV). All three above authors use the device of the Krosecker pro-
14duct of matrices, first used by Bellman in studying the asymptotic

behavior of products of independent random linear transformations.

In a recent paper on products of random matrices, Furstenberg and

Kesten 1i have found general conditions for the convergence of the ran-

dam sequence {n "1 log [ Xn . .. x.X 1 j } with {Xn} a stationary to-

chastic process with values in the set of k x k matrices, and have de-

duced the asymptotic normality of log(XnX n.l. X), a result earlier

conjectured by Bellman. 14

-3-



1. 3 Outline of Present Study

In general, the problem of stability is to determine the extent

to which a set of properties of a system remains invariant under a

specified set of disturbances or alterations on the system, on the

initial conditions, etc. For deterministic systems, a common sta-

bility problem is the study of deviations of the system state vector

from a given equilibrium state ( or equivalently from a given solution)

when initial conditions are close to this equilibrium state; the various

stability concepts are generated by imposing requirements that the

magnitude of the deviations remain small for all time, that it returns

to sero as t-ho, that it satisfies uniformity conditions with respect

to initial conditions, etc. The corresponding problem for random sys-

tems is considered here, the deviation now being measured in some

steckastic sense, e. ., in probability, almost surely (with probabil-

ity one), almost uniformly (-in- w), in the ith meanz etc.

In Chap. II, concepts of stability appropriate to random differ-

ential systems are formulated and discussed. Precise definitions of

stability are given and theorems interrelating these definitions are
proven. In the beginning of the chapter. numerous definitions of sta-

bility are stated to provide the motivation for the definitions in the

random case. Although here, and in the remsining chapter%, the sys-

tem is assumed to be a differenflal one, by making small changes it

is possible to apply the material presented to other types of systems,

e. g., to systems of random difference equations.

Chapter III is devoted to the stability analysis of the random lin-

ear dfasrential system with piecewise constant coefficients:

A= AkX, tkl< ttk, k=l, 2,

where x(t) is an n-vector and Ak is a constant n x a matrix. The be-

havior of the system is completely determixed by the random sequence

(A'k(tk-tk.1), Iassumed in Chap . II to be an independent, identically

distributed, random process. Some particular results obtained are

-4-



the necessary and sufficient conditions for asymptotic stability in the

ith moment and sufficient conditions for almost sure asymptotic sta-

bility.

Chapter IV considers the same system as Chap. III except that

{Ak(tk-tkl)l is now a finite Markov chain. The results obtained are

almost identical to those of Cha&47III. In fact, all the results of Chap. III

can be deduced from those of Chap.IV (and Appendix E). The indepen-

dent case is treated separately in Chap.III because it seems preferable

to do so from an expository point of view.

The preceding chapters have considered the unforced system. In

practice, however, it is the behavior of the system in the presence of

an input that is of interest. in Chap. V, a theorem is proven for random

linear systems which shows that, if the unforced system is exponen-

tially asymptotically stable in the mean norm, then some stochastic

equivalents of "bounded output to every bounded input" are true.

II. STABILITY OF RANDOM SYSTEMS

Summary

Concepts of stability appropriate to random differential systems
are formulated and discussed. Precise definitions of stability are given

and theorems interrelating these definitions are proven. In the beginning

of the chapter numerous definitions of stability of deterministic differ-
ential systems are stated to provide the motivation for the definitions

in the random case. Although the system is assumed to be a differential

one, by making small changes it is possible to apply the material pre-

sented here to other types of systems, e. g. , systems of random differ-

ence equations.

2. 1 Deterministic Systems

Consider the differential equation

i = f(x, t) (2.1)

where x is an element of the real, (normed) vector n-space Rn, and f

-5-



is defined on RnX {t:t >0). The function f is assumed to be suffi-
ciently smooth so that solutions of (2. 1) exist and are unique for
all t > 0 for all initial values x 0 = x(t0 )i to > 0, and are continuous

35
in (x0 , to). g(t, x0 , to) will be used to designate that solution which
satisfies the initial condition g(t 0 , x0 , t) x0 . By an abuse of notation,
x(t) also will be used to designate a solution but the context will be such
as to preclude any ambiguity with the variable x of the differential equa-
tion (2. 1).

Without loss of generality it is assumed that f(0, t) = 0 for all t > 0
so that x a 0 is always a solution, called tke trivial solution. For, given
any solution of a differential system, it is always possible by introduc-
ing a change of variables in the differential equations to arrive at a new

differential system1 6 which satisfies the relation f(0, t) = 0 for all t > 0.
The term stability as considered here is the study of the deviation,

from the trivial solution, of solutions corresponding to nonzero initial

conditios.

DEFINITIONS *: The trivial solution g(t, 0, to) = 0 is called
(i) stable if given * > 0, t 0 , there exists 6(c, to) > 0 such that

i x0 jj <6 implies fI g(t,x 0, t0 ) < * for all t > to
(ii) uniformly stable if given a > 0, there exists 6(e) > 0 such

that for all to, j x O0  < 6 implies f (t, xo, to)1 <a for all t >t o .

(iii) quasi-asymptotically stable iU given t0 , there exists
6(t 0 ) > 0 such that j x0o < 6 implies g(t, x 0 , t 0 )--P0 as t --- co.

(iv) asymptotically stable if it is stable and quasi-asymptotically

stable.

(v) SELasi-equiasympttically stable if given any to, there exists

6(t 0 ) > 0 such that fl x0 J1 < 6 implies g(t, x 0 , t 0 )---P0 as t--PO
uniformly on f x 0 U < 6.

It is understood that t >t 0 > 0.



(vi) equiasymptotically stable if it is stable and quasi-equia-

symptotically stable.

(vii) quasi-uniformly asymptotically stable if there exists

6 > 0 such that for all to, U xoj < 6 implies g(t, Xo, to) -40 as

t - co uniformly on to > 0, x0 11 < 6.

(viii) uniformly asymptotically stable if it is uniformly stable

and quasi-uniformly asymptotically stable.

(ix) exponentially asymptotically stable if there exists a v > 0,

and given any t > 0, there is a corresponding 6(e) > 0 such that for

all t0 , 11 x0 11 < 6 implies 11 g(t, x0, t0 ) 1l <e exp [-v (t-t 0 )] for all

t> t0.

Implications such as the following ones are obvious:

(ii) M (i)
(vii) M v (iii)

(viii) (i) - (vii)

For other implications, examples, and discussion of the definitions, see
17 18 19

Antosiewicz, 17Massera, Kalman and Bertram. The latter two

references also consider concepts of stability in-the-large.

If the system is linear, that is if f(x, t) is a linear in x, then (viii)

and (ix) are equivalent; in fact, for (ix) there is a constant K > 1 such

that it is possible to choose 6(e ) = e /K so that

11 g(tx 0 t0 )JI < K11 x011 exp[ - v(t-t 0 )] for all t > t o . See Massera.18

Definition (i) requires that the trivial solution be stable for ever

initial time t o. Since the solution functions are assumed to be continu-

ous in the initial value x 0 it suffices to have the trivial solution stable

for some t 0 ; namely the trivial solution is stable if (and only if) there

exists some number to with the property that given any f > 0 there is

a 6(s, t 0 ) > 0 such that 11 x011 < 6 implies 11 g(t, x0 ,t 0 ) <a for all

t > to. See Kalman and Bertram. 19

Similarly for definition (iii), it suffices to have quasi-asymptotic

stability for some initial time t 0 ; that is in order that the trivial solu-

tion be quasi-asymptotically stable, it suffices to have some t0 and a

-. 7-



corresponding 6(t 0 ) > 0 such that JJ xo I < 6 implies g(t, x 0 , to) - 0 as
t---oo. For, given any other initial time t, consider the mapping of

the set E 0 = (x 0 : II x011 < 6(t 0 ) ) under the solution function to the set

Eb = ( x = g(t x0 , to): II x 0 I < 6(t 0 ) I Since the solutions are unique
and continuous in the initial state, the mapping E 0-- ) E is a homeomor-

phism. Further, E' contains the point x'= 0 for this is the map of the

point x 0 = 0. Hence, there is a set E 6 , = {xb: xI < 6'} CE' for some

6' > 0, and g(t 0 , xb , tb) $ for every x; E 6 1 , which implies that

g(t, x;, tb )--+0 as t ---+ C.

All of the above stability properties are independent of the choice of

the norm. For, given any two norms and I1 I defined for
the elements x of a finite-dimensional vector space, there ex'ist two con-

stants k12, k2 l, such that (see Householder 2 0 , Naimark3 6 ).

k2111l xxl )1 < kl2 11 x 1(2 for all x.

2.2 Random Systems

The differential equation (2. 1) now becomes

x t: f(x, t; W) (2.2)

where wo is a point in a probability space Q . For every fixed wo, f satisfies

the' assumptions made at the beginning of the previous section on deter-

ministic systems. The time interval of definition of f, [ 0, co) is fixed,

i. e. , does not depend on the choice of wo. Also, f(0, t;w) = 0 on [0, ao)

X(? so that again x a 0 is always a solution.

To every (x 0 , to) there corresponds the set of solutions {g(t, x0 , t 0;;),
ws Q } with g(t 0 , x 0 , t0;t) = x0 for all wo; that is, to every (x 0 , t0) there

corresponds a random process, namely,a family of random variables

indexed by t. The problem of stability is that of studying the probabi-

listic departure, from the trivial solution, of the class of random pro-

cesses generated when x is taken to be different from zero. The defi-

--nitions given in the previous section are to be modified so as to take

-8-



into account the dependence on w of the solution function g(t, x0, t0; w).

This dependence on w, however, will not be exhibited always by the

notation -- in most cases solutions will be designated by g(t, x0, to).

Thus from the previous definition of stable, one may obtain

DEFINITION (i-a): The trivial solution g(t, 0, to) = 0 is called

stable in the mean norm if given * > 0, to, there exists 6(e, to) > 0

such that 11011 < 6 implies El 1g(t, x 0 , t0 ) 1 <a for all t > t o '

In connection with the above definition it is useful to note that

(1) Norms such as

/p
= , p > 1 (2. 3)

may not be desirable from the viewpoint of analysis for they involva

the operations of taking the absolute value and extracting the pth root.

However, for any scalar random. variable Z, 21

S( 1 )EI ZI r) / r  0 <r I < r2  (2.4)

Then for any fixed p > 1, it follows, by setting Z I l 
p  ,

r1 = l/p, and r 2 = 1, that

(Ell xjj )P E(1IxilP)1 < E x ilP=ElxU P-- p

(Z. 5)

Hence, in establishing the property of stable in the'mean norm with

respect to the norm 11 xf p, it suffices to show that E gil p < e

rather than Ell g 11 < 4 as in definition (i). The quantity 11 xl P
p p

is not endowed with the homogeneity property of the norm,

l axil = jai fl xl, on which rests the invariance property:

(2) As in the deterministic case, the choice of the particular

norm is irrelevant -- the property of stability in the mean norm is

invariant under changes of the norm.

It follows from (1) and (2) that stability in the mean norm is a

consequence of mean square stability, defined as:

-9-
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DEFINITION (i-: The trivial solution is called mean square

stable if to every E > 0, to, there corresponds a 6(a, to) > 0 such that

11 X0 f < 6 implies

E (gi(t, x< t0 )) E for all t> to
i--l

KRONECKER AND POWER PRODUCTS. The theory of Kronecker

and power products of matrices is connected with the problem of sta-

bility in the mean square sense, or more generally, in the sense of the

ith moment, of linear systems. Appendix A defines the Kronecker and

the power products and states some of their properties. Stability con-

cepts based on the Kronecker and the power product are motivated and

developed in Chapall and IV. The brief discussion below is included

here for the sake of completeness.

The Kronecker product of the n-vector x - ( ' 2 " " ) by the
n

m-vector y = i(l' p " m) is the nm-vector

x 40 y =(911111 91112, 9., 1~m , 92TI1, giZ, • , nm )

having as components all possible products of a component of x by a

component of y. The Kronecker product of x by itself is the n-vector

x (I x and is denoted by x[ 2] The ith self-Kronecker product may

be defined by the recursive relation:

xi =x " '[i-1i, i = 2, 3,

(=x[ i-1] @ x since the product is associative). The vector x[l] is

taken to-be identically x

The power product of x by itself is the n(n +1)/2 vector

x( 2 ) = (4 49 9142, . . . , # l n, 9292 92 93,  ... , Ign*n

For an nth-order scalar differential equation, the term mean

square stable is ttsed often in the sense that the .expectation of the square
of the (scalar) solution function remains small. See Refs. 9 and 10.

-10-



having as components distinct products of components of x. A higher

power x(i ) is similarly defined as the vector having as components the

*(+"1) distinct ith-order products of components of x. The lexica-

graphic ordering in a possible ordering for the components of x(i), and is

the one obtained from the Kronecker product x[i ] by inspecting successive-

ly the components of x[ i] starting with the first component and deleting

any component which is identical to any preceding component. Thus, if

x = (u, v), then x[ 2] = (u , uv, vu, v ), and x()= (u2 , uv, )

Returning to the discussion of stability,

DEFINITION (i-c): The trivial solution is said to. be

ith moment if given any a > 0, t there exists 6( E, to) > 0 such that

Hx0I < 6 impliesil Eg[i](t,x 0 ,t 0 )lI <t for all t > t o .

The above definition remains unchanged if the Kronecker product

g[i] is replaced by the power product g( 2 )" Such a replacement will not,

in general, alter in any significant way most of the statements made in

this report. It turns out that for theoretical analyses it is simpler to

use the Kronecker product for one is not plagued by considerations of

ordering of the components of the vectors and of the matrices. Hence,

the Kronecker product will be used exclusively in the sequel. However,

when numerical computations have to be performed in a particular case,

the problem can be formulated in terms of the power product for the

smaller order of the power product vector can be of distinct computa-

tional advantage.

It is apparent from the definition of the Kronecker product and from

definition (i-c) that stability in the ith moment requires not only that the

ith moments of the individual components of g be small, but also that

all ith-degree cross moments of components of g be small. The value

of thi latter requirement on the cross moments becomes clear in

ChapsII and IV. But it should be mentioned here that if i is even, then

the requirement on the cross moments is, in a sense, superfluous.

This follows from the inequality

aa

-11-



E1T z J 7 1EzIJ iJ/i (2.6)

ij i, j>o0, j= 1,2,... n

where the Z are scalar random variables. The inequality is a modified

form of the Hafder inequality and is proven in Appendix B. Hence, for

i even, if for the vector g = (11' g2 '...' , gn) , EgS in small for all J,

o l 2 '"n 1 i. Consequently, definition
then soaln E(gl 1 92 . gn2  * L I

J1=

(i-c) of stable in the ith moment for even i remains unchanged

if 1J Egi, l is replaced by E I gj . In particular, stability in the

j=l

second moment, (i-c), is equivalent to mean square stability, (i-b).

Moreover, by inequality (2.4), it follows that if i is even then stability

in the ith moment implies stability in the jth moment for all even j < i.

Hence, it also follows that stability in the ith moment for any even i

implies stability in the mean norm (irrespective of the norm.). The

various properties established above can be of value in the stability

analysis of a given system where the individual mature of the problem
may make it more pertinent or expedient to consider a particular type,

rather than some other type, of stability.

Unlike the three preceding definitions, the two following definitioas

do not involve any "averaging" operations.

DEFINITION: The trivial solution is called

(i-d) stable in probabilitj if given4 > 0, il > 0, t0 , there exists

6( ,, T, to) > 0 such that O x0 i < 6 implies Pf j g(t, x0 , t0 ) <6 ]>1"-n
for all t > t0 .

-12-



(i-e) stable almost surely if there exists an w-set S with P(S) = 1,

and given w a S, a > 0, to, there exists 6 (4, t O) > 0 such that for

all wsS, Qx0f <6 implies 1 g(t,x 0 ,t0 ;w)) <4 for allt>t;

that is, for almost every w, the trivial solution is stable.

The dependence of 6tWonw is somewhat unsatisfactory for given t0 and a

bound E on the solutions, there is no guarantee that one can find a common

bound 6(i, t0 ) on the initial values x 0 to insure that the norm of almost

all realizations (i. e., for all w belonging to some set S with P(S) = 1)

remains within t. Clearly 6 n6 is the largest possible 6;

if 6 = 0, however, then no such 6 exists. In general, for the systenzs

considered in the following sections, 6 = 0 and this property of uniform-

ity over a set of probability 1 will not be discussed further. If, however,

it suffices to have a set of probability arbitrarily close to, but not neces-

sarily equal to, one, on which there is a uniform bound on the initial con-

ditions, then it can be shown that this is equivalent to almost sure stabi-

lity. This motivates the following-

DEFINITION (i-f): The trivial solution is called stable almost uni-

formly-in-w if given any 'i > 0, to, there exists an w-set B(i, t 0 ) with

P(B) > 1 - I and given any a > 0, tO, there corresponds a number

6(. ,'i, t0 ) > 0 such that 11101 <6 implies al g(t, x0 , t0 ;W) <e for all
t>t andall w6B.

THEOREM 1: The trivial solution of (2. 2) is stable almost surely

if and only if it is stable almost uniformly-in-w. (Proof: See Appendix

C.)

It is clear that (i-f) implies (i-c); hence by the preceding theorem,

(i-d) also implies (i-c).

The concept of uniform stability for deterministic systems has its

natural counterpart in stochastic systems.

DEFINITIONS (ii-a)-(ii-f): The trivial solution is said to be uni-

formly stable in the mnean xorm, in the mqan sguare in the ith moment,
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inprobaklity, almost surely, almost uniformly-in-w, if it satisfies

definitions (i-a), (i-b), (i-c), (i-A), (i-e), (i-f) respectively, with 6

independent of to (and B independent of to in definition (i-f)).

The following theorem parallels Theorem 1:

THEOREM Z: The trivial solution of (2. 2) is uniformly stable al-

most surely if and only if it is uniformly stable almost unformly-in-.

PROOF: The proof follows at once from the proof of Theorem I

upon noting the uniformity in t0 of B and of 6.

ASYMPTOTIC CONSIDERATIONS. In the preceding section, the

definitions of stability relate to the behavior of the solution function

for all time t > t0 * In this section it is the large time or asymptotic

behavior of the solution functions that is of interest. Additional re-

quirements of appropriate behavior for all time t > t0 may or may not

be imposed.

The collection of solution functions g(t, x0, to; 0) is a clams, indexed

by (x0, t0), of random processes. The convergence in t of the random

processes for all (x 0 ' to) belonging to some set is of interest. The types

of convergence considered are those commonly studied in probability

theory, namely, in the ith mean, in probability, almost sure, and al-

most uniform (-in-w). (See Loeve. 21) From the usual definitions of

these modes of convergence the definitions of stability follow, attention

being paid to the dependence of the random processes on the couple

(x0 t0 "

DEFINITIONS: The trivial solution is called

(iii-a) _usi-aympttically stable in the mean norm if given t0 there

exists 6(t.) > 0 such that 11 x011 < 6 implies EL1 g(t, x0 , t 0 ) I --- 0 as

t -0-o.

(iii-b) uasi-asymptotically stable in the mean square if given t0 there

exists 6(t 0 ) > 0 such that N xo I < 6 implies

J (gj(t, x 0 t 0 )) 2 -- 0 as t -4m.

J=l
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I

(iW-c) q"uasi-asymptotically stable in the ith moment if give& t tere

exists 6(t 0 ) > 0 such that I x 0 1 < 6 implies Eg[i](tx 0 ,t) -"0 as
t--w

(iii-d) .,_i-asmptoticall, stable in probability if given n > 0> to,
there exists 6(%i, t 0) > 0 such that given any s > 0 there is a

T(4,it, x0 . t 0 ) >0 suchthat Rx 011 < 6 implies

P[g(t, x0 ,to)j <t ] >1 - ifor allt>t + T.

(iii-e) quaa-aymptoticall stable almost surel if there exists an w-set

'S with' P(S) = 1 such that for every .o&S the trivial solution is quasi-

asymptotically stable; or equivalently, there exists anw-set S with

P(S) = 1 such that given top W 4 S, there exists 6(W, t0 ) > 0, and for any

. > , there is a T( a, w, xo to) > 0 suck that 11 Xo I < & implies

U g(t, xo, t0 ; ()I <, for all t > t0 + T.

(ill-f) quasi-asymptotially stable almost unLformly-in-w if given >Q,t

there exists 6(I, t 0 ) 0, and given any x 0 , 1 x 0fl < 6, there is an w-set

B(n, x0 , to) with P(B) > 1-aq such that 0 x 0 Q < 6 implies g(t, x 0 , to; w)--90

as t--*o uniformly on B; or equivalently, given q > 0, t0 , there exists

(t, to) > 0 such that 11 xo  <G implies there exists an w -set B(q, xO , t o)

with P(B) > l-v having the property that: to every a > 0, there corre-

spands a T(G , %x, t 0 )> 0 such that Uxoil < 6 implies g(t, xo, to;W)Q

<4 for all t> t0 +T and allw.iB.

The discussion given at the end of definition (ii-e) is equally per-

tinent here. In definition (il-e) the bound on the initial value and the

number T governing the rate of convergence depend on w; in definition

(iii-t) both 6 and T are uniform in a but this uniformity is over an

wo -set B whose probability can be chosen to be arbitrarily close to,

but not always equal to, one. The following two theorems complement

Theorem 1.

THEOREM 3: The trivial solution of (2. 2) is quasi-asymptoti-

cally stable almost surely if it is quasi-asymptotically stable almost

uniformly-in- w with the set B(see definition (ill-f) above) indepen-

dent of xO . (Proof: See Appendix C.)
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THEOREM 4: The trivial solution of (2.2) is quasi-asymptotically

stable almost uniformly-in-wif it is quasi-asymptotically stable almost

surely. (Proof: See Appendix C.)

Clearly (ill-f) implies (iii-c), whence by Theorem 4 (iii-d) also

implies (ill-c).

The statements of the above theorems can be suitably altered to
acorporate some requirement of uniformity of 6, B, T, in the variables

Xgi t0 1 The proofs would parallel closely those of Theorems 1-4. Defi-
nitions (i-d)-(i-f), (ii-d)-(ii-f), (iii-d)-(ili-f) can also be modified some-

what to describe closely related concepts. For example, definitions

(i-e), (ill-e) may be altered so that the set S of unit probability depends

o1 the choice of t 0. Thus the definitions and theorems given in this sec-

tion are merely indicative of tke concepts and results that can be ob-

tained. They are by no means exhaustive.

In the deterministic case, asymptotic stability requires both stabili-

ty and quasi-asymptotic stability. Likewise, in the random case, the

following definitions can be formulated:

DEFINITION: The trivial solution is called

(iv-a) asymptotically stable in the mean norm if it is (ii-a) and

(iii-a).

(iv-b) asymptotically stable in the mean square if it is (ii-b)

and (ilu-b).

(iv-c) asymptoticali7 stable in the ith moment if it is (i-c) and

(iii-c).

(iv-d) asymptotically stable in probability if it is (ii-d) and (iii-d).

(iv-e) asymptotical!Z stable almost surely if it is (ii-e) and (Ill-e).

(iv-f) asymptotically stable almost unaiormly-in- w if it is (ii-f)
and (iil-f).

It follows from their respective definitions that (iv-f) implies

(iv-d); hence by the above theorem, (iv-e) also implies (iv-b).
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The remaining concepts of stability, (v) - (ix), can be similarly

generalized to the random case. To avoid repetitiousness, they will

not be discussed here. Exponential asymptotic stability is, however,

considered briefly for it is used specifically in Chap. V.

DEFINITION: The trivial solution is called

(ix-a) exponentially asymptotically stable in the mean norm if

there exists a v > 0, and given anyE > 0 there is a 6(E) > 0 such

that for all to, 1 x0 f < f implies E fl g(t, x0 ,t0 ) < a exp [-v(t-t 0 )]

for all t> to.

(ix-c) exponentially asymptotically stable in the ith moment if there

exists a v > 0, and given any E > 0 there is a 6(E)> 0 such that for all

tO, Hx0 1l < 6 implies 11 Eg[ i] (t ,x 0 ,t 0 ) 11 < . exp] - v(t-t 0 )] for all t > to.

As before, (ix-c) for even i implies (ix-a). If the system is linear,

that is, if f in Eq. (2. 2) is almost surely linear in x, then (ix-a) implies

uniform asymptotic stability in the mean norm and (ix-c) implies uniform

asymptotic stability in the ith moment. Moreover, by virtue of the

linearity in x of the solution functions of the differential system, for

both (ix-a) and ix-c) there exists a constant K > I such that it is possible

to choose 6(c) = */K so that Eli g(t ,x 0 ,t 0 ) 1 < Kf1 x0 11 exp [-v(t-t 0 )] and

iEg[i](t,x0 ,t0 )l < Ku x0 11 exp [ - v(t-t 0 )] respectively.

III. LINEAR SYSTEMS WITH INDEPENDENT PARAMETERS

SUMMARY

This section is devoted to the stability analysis of the random

linear differential system with piecewise constant coefficients:

S=Akxx, tk-l<t< tk , k =1 2 ... (3.1)

where x(t) is an n-vector and Ak is a constant n x n matrix. The be-

havior of the system is completely determined by the random sequence

{Ak(tk-tk-l)} here assumed to be an independent, identically distri-

buted-, random process. Chapter IV treats the case where {Ak(tk-tk-l)}
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is a homogeneous Markov chain. * Necessary and sufficient conditions

for stability, and (exponential) asymptotic stability, in the ith moment,

are obtained. It is shown that almost sure asymptotic stability is a

consequence of asymptotic stability in the ith moment, i an even integer,

and that the converse implication is false.

3.1 ith Moment Stability

Given an initial vector x(t0 ) = x0 the solution of the differential

equation (3. 1) in the first time interval is
A 1 (t-t0 )

x(t) = e x 0 , t 0 t <t 1

Defining the solution function at time t1 by continuity from the left,

A1 (tl-to)
x(t 1) = e x0

and taking this to be the initial value for the next time interval, the

solution in the second time interval is

x(t) = e A(t.t1)x(tl)

= eA(t-t1) e Al(tl-t 0)1  t<t<t 2

It follows that the time function

eAk(t'tk. ) eAk-l(tk-ltk_2 )  eA1(tl'tO)x(t) = •AI leA tIl2... e x0 , (3.2Z)

tk-l<t <tk, k= 1,2,3,...

satisfies the initial condition x(t0 ) = x0, and satisfies the differential

equation (3. 1) everywhere except at the time instants tl, t2 , t3 , ..

The function x(t) defined by (3. 2) will be taken as the unique solution

of (3. 1) satisfying the initial condition x(t 0) = x0.

Define
Ak(tk'tk. I )

-k = • (3.3)

All of the results of this chapter can be deduced from those of

ChapLV (and Appendix E) which treats the Markov case. It is prefer-
able, however, from an expository point of view, to treat first the
simpler case of independence.
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Then the solution (3. 2) can be written as

(t) = eAk(t-tk-l) k-1 k-2" (3.4)

tk-l <t <tk, k=l, 2, ...

Evaluating the solution x(t) at times tk only, (3. 4) yields

k = I k~k-l'" "Ixo (3. 5)

where

x(tk) = xk = kxk-l (3.6)

It is clear from the definition of lk' Eq. (3. 3), that the behavior of

xk depeads only on the probabilistic structure of the random sequence

{Ak(tk-tk-l)). It is also clear from the continuity, with respect to

the initial value x09 of solutions of the differential equation (3. 1) that

it suffices to examine the sequence {Xk) to determine the stability

(of the trivial solution) of the differential system (3. 1), provided the

k are bounded in some sense. Hence it will be assumed that the

Ik are bounded (almost surely) uniformly in k, i. e., there exists

a finite M such that for all k, P i lkl <M = 1.

In the remainder of this section it is assumed that k i) is a se-

quence of independent, identically distributed, random matrices of

order n x n. Since the sequence {Xk) is generated by subjecting a

given vector x0 to a succession of independent, identically distributed,

random linear transformations: xk = 1kl kl.. 1 lx0 , the random

sequence {xk) is a homogeneous, nonstationary, infinite Markov

chain. (See Chap. IV, Secs. 4.1 and 4. 2. )

Take the expectation of both sides of Eq. (3. 5) to obtain

Exk = E( klk-l... l)x0,

which by independence becomes

Exk = (Elk)(Eik.)... (E I)x 0
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Moreover, since the Ik have a common distribution,

Exk = (E )k xO (3.7)

where the subscript on i has been dropped because E j does

not depend on j.

Equation (3. 7) shows that the behavior of Exk as a function of

k depends only on EI (for fixed x 0 ), in particular, only on the

location and the index of the eigenvalues of E j . This point is

elaborated on later when it is shown that the computation of the ith

moment, i = 1, 2, 3, ... , of xk leads to equations identical in form

to (3. 7).

To evaluate the second moment it is necessary to work with

the squares of the components of xk. For algebraic simplicity assume

that the system is order (n=) 2. Let xk = (uk, vk). Then the relation

xk = ikk-l can be written as

k(k) (k) -uk 11 l 12 Uk-l

L= .- k) (k)] [Z:1

which may be expressed as

(k) u + . (k)

U'k = 11 Uk-1 1rl Vk-1

V (k) 1 (k) V
k ? uk- I + ~-22 0-l
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Form all second-order products of components of xk to obtain

2 u ) k) (k)u v ki+ (k) (k)k + *(k)Z 2
k 1 'k-l 11 l 112 l Vkl'kl+ 12 vk-i

k ) 40 (k)U2.+ (k) (k)uk) (k) (k) (k) 2
= 21 k-k 122 4-(k-k) 21 k-luk- 1201vk-l

S (k) 2 + _k) ((k) (k)'k'k 21 -l "'U Uk-l1' 12"I k-1k-1 l 1 V- - ZY-

Vk 2 jk) 2_ 0 (k) b (k)uk ~. + (k)- (k)v  _ + k)2 v

= 1 2k-l kl 4qk 21 vk-lUk-l 42*Vk-l

(3.8)
Define Xk[-] by

2
Uk

xk[Z] v
VkU k

2

Then (3. 7) shows that Xk[2] is a linear transform of xk-l[2] ,

x = [] ]k[2]xk ,[2]1 (3.9)

the matrix fk[ 2] of the transformation being defined by the set of

equations (3. 8). The recursion equation (3. 9) is linear, as is the

original equation (3. 6), yet it relates second-order forms of compo-

nents of Xk, this being achieved at the cost of working in a higher

dimension. The technique used is, in fact, that of Kronecker pro-

ducts (as explained below), which dates back to the last century

(see MacDuffee, 2 pp. 81-86) and which was used recently by Bellman 14

in. solving a similar problem of computing momuents.
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IkI
The matrix k [2] in Eq. (3. 9) i. recogniz-ed to be the

Kronecker (or direct),product of fk by itself:

likewise, xk[2] is the Kronecker product of xk by itself:

xk[ 2 kk

(Appendix A is a brief outline of some of tke useful properties of

Kronecker and power products of matrices. )

By using the theory of Kronecker products, Eq. (3. 6), valid for

systems of !" order, can be easily derived. Take the self-Kromecker

product on both sides of Eq. (3. 6) to obtain

xk 0 xk (Ikxk) 4D kxk (3.10)

where xk is an n-vector. Now, for any two matrices A and B, not

necessarily square but such that the product AB is defined,

AB ) AB = (AB)[] = A[ 2 ]B[2 ] = (A ® A)(B 4 B); (3.11)

that is, the operations of the Kronecker product and the conventional

matrix product commute. It is this commutative property that makes

the theory of Kronecker products so applicable to the problem of

evaluating moments. For it follows from Eq. (3. 11) that (3. 10) can

be reduced to

xk[2] = Ik[Z]x-1l[2]

wkence by iteration onk

k[Z] tk[Z]k-l[Z] ... |I[ZlxO[2]
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Similarly, for ith-order products, form i-fold products from Eq. (3. 6),

xk 4D xk xk =  kXk-l 4 IkXk-l .. ) k-k

and by repeatedly using the commutative property (3. 11), obtain

xk[i] = 'k[i]kl[i]... 1l[i]xO[i] (3.12)

where the subscript [i] denotes the ith self-Kronecker product.

Now, { f kI i]) is an independent, identically distributed, random

sequence of matrices (of order n i). Hence, taking the expectation in

Eq. (3.12),

Exk[i] = (E i])kxO[i] (3.13)

The vector xk[i] has as its components all ith-order products of com-
ponents xk; hence, Eq. (3.13) gives an explicit and simple relationship

for studying the ith moment of components of xk. The knowledge of

the moments at time t may be used to study the probability distribution.

of xk (see Cramer, p. 176). Also, bounds on the probability of devi-

ation from zero of any component of xk may be evaluated readily by

using the Markov inequality2 1

P[ ] < ELZlr f >0, (3.14)1 r

where Z is a scalar random variable and r is a positive real number.

Equation (3.13) shows that the behavior of large powers of a

matrix is of interest. Hence consider the following

LEMMA: Let F be a complex matrix of finite order. Then

(i) lir Fk = 0 if and only if every eigenvalue of F lies insidek-co

the unit circle; in fact, IFk will converge exponentially:
there exist two constants K1 Z 1, il 0 such that
k exp [ k  -
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(ii) lir Fk = F1 0 if and only if one is an eigenvalue of F of
k-*o

index* one and all other eigenvalues of F are inside the unit circle;

(iii) Fk is bounded uniformly in k but does not converge as

k-*w (is "oscillatory") if and only if F has no eigenvalues outside

the unit circle, all eigenvalues on the unit circle are of index one,

and there exists an eigenvalue not equal to one on the unit circle;

(iv) lim 1 Fkj = co if and only if F has an eigenvalue outside thek--)o
unit circle and/or has eigenvalues of index greater than one on the

unit circle; in fact, 11 F k1 will diverge exponentially: there exist

two constants K 1 , > 0 such that 1 Fk11 > Kexp[ +k].

PROOF: To arrive at the above conclusions , it is only necessary

to transform F into a Jordan canonical form so that powers of F can

be studied readily.

THEOREM 1: The trivial solution is stable in the ith moment (A)

if and (A') only if no eigenvalue of El[i] lie outside the unit circle

and any eigenvalue on the unit circle has index one. It is asymptotically

stable in the ith moment (B) if and (B') only if all eigenvalues of E[i]

lie inside the unit circle. Moreover, in (A) and (B) it is uniformly

stable in the ith moment and uniformly asymptotically stable in the

ith moment-respectively.

PROOF: (A) By the assumptions on the eigenvalues and. by the

above Lemma, sup 1 Eflt i] )k11 < M for some finite 14 Given any
k>l

e > 0, choose 6(e) = /M. Then by Eq. (3.13),

IIEXk[i] l < 1(Elk[i])k11 Ixo[i] 1 <MI1x 0 [i] 1. (3.15)

if 11xo[i] 11 < 6i, then 11 Exk[.] i1 is less than i. But 11 x0[i] 11 < i

is equivalent to 11 X0 11 < 6 for some 6 > 0 . Furthermore, 6', and

hence 6, do not depend on tO. Hence the trivial solution is uniformly
stable in the ith moment.

(A') If the eigenvalue assumption is violated, then by part (iv)

of the above Lemma, II(E i1)-I "- co as k---o; or equivalently,

some element of the matrix (E1l i] ) becomes unbounded as k---oo.

The index of an eigenvalue is its multiplie~i as a root of the
minimal polynomial of F. See also Friedman, Chap. 2.
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Hence there does not exist any 6 > 0 with the property that for some

to, j EXk[iJ II = IEI.iJ)kxoli] 11 remains bounded as k--a0 for

all 11 x0 j < 6. This implies that the trivial solution cannot be stable

in the ith moment.

(B) By part (i) of the preceding LemmaA Eti])k.*0 as k-boo.

Clearly this convergence is uniform in t0 . Hence, given any 6 > 0,
it follows by Eq. (3.15) that for all t0 , f x0  < 6 implies Exk]-0

as k--oo uniformly in t0 , and uniformly on f x0 i < 6 (since the

system is linear). Hence the trivial soution is uniformly quasi-asymp-

totically stable in the ith moment. Moreover by (A), it is uniformly

stable in the ith moment. Therefore it is uniformly asymptotically

stable in the ith moment.

(B') If every elgenvalue of E~t-- is not inside the unit circle, then

by part (i) of the preceding Lemma, (EJ[i])k will not converge to the

zero matrix as k--oo. Hence there exists no 6 > 0 such that for some

to# Exk[3i] (El[i]3)kxo[i] ".4 0 ask--+oo for alli x0  <6. There-

fore the trivial solution cannot be quasi-asymptotically stable in the ith
moment and hence asymptotically stable in the ith moment.

For subsequent use, especially in Chap. V in connection with the in-'

homogeneous (forced) random linear system, it is useful to establish

the property of exponential asymptotic stability:

THEOREM 2: For the random linear system (3. 1), the following

propositions are equivalent:

(a) All eigenvalues of E3{ ire inside the unit circle.

(b) The trivial solution is uniformly asymptotically stable in the

ith moment.

(c) The trivial solution is exponentially asymptotically stable in

the ith moment.

PROOF: The equivalence of (a) and (b) was established in Theorem 1.

That (c) implies (b) follows at once from the definitions of exponen-

tial and uniform asymptotic stability in the ith moment.
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To show that (a) implies (c): Since all eigenvalues of Eli

are inside the unit circle, by part (iv) of the Lemma there

are two constants K> 1 and v > 0 such that 11 (E [i]i)k < K exp(-vk).

Hence by Eq. (3.13),

11 Ex k[ i] < KI 11Xot il 11 exp(-v k) < Kill1 xol11 exp(-v k)

for some Ki > 1 from which follows the desired result.

An inspection of the set of equations (3. 8) reveals that the third

equation is superfluous and leads to the condensed set of equations

2 2 i(k)2 2 .(k),(k) (2
"11 12 12 Uk-l

ukv = b(k)d,(k) 4k)-0 (k)..(k). (k) -)(k) u vUk k "11 21 11 22 "12 oil 012 '022 -kl

2 I [0(k)2 27(k)., (k) (k)2 2

k 21 21 22 22 vk-l

which may be expressed as

Xk(2) = k(2)Xk-l(2)

The vector Xk( 2 ) and the matrix _k(2) are recognized to be the self-

power products (see Appendix A) of xk and "k' respectively. As in

the Kronecker product case, for a system of any order,

(E k
Exk(i) = (EI(i)) x0(i)

is the relation for the ith moment and the eigenvalues of El M deter-

mine the asymptotic behavior of the ith moment.

In theoretical analysis, the symmetrical structure of the Kronecker

product matrix is most useful; on the other hand, the smaller order of

the corresponding power product matrix can be distinctly advantageous

in reducing the numerical work. The Kronecker product will be used

a •exclusively hereafter.
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A central problem in the application of the above methods is the

study of the location of the eigenvalues of matrices with respect to the

unit circle. Either Schur-Cohn or transformed Routh-Hurwitz criteria

may be used (see Marden, 25 Bharucha, 26 Jury 26-28) but paper-and-
pencil methods are tedious even for systems of low order. The prob-

lem, however, readily lends itself to solution on a digital computer

3.2 Almost Sure Asymptotic Stability

By Eq. (3.13) and Theorem 2, if all the eigenvalues of E [. i] are

inside the unit circle, then the trivial solution is asymptotically stable

in the ith moment and Exk[ i] converges exponentially to zero. The

exponential convergence implies that I Exk[ i] exists and is finite,

k=l

which via the Markov inequality and the Borel-Cantelli lemma shows
a. 9.

that x k ip 0 if i is even. Since the system is linear, this conver-

gence is uniform in x 0 , from which follows

THEOREM 3: The trivial solution is equiasymptotically stable

almost surely if for some even i, all eigenvalues of Ej[ i] are inside

the unit circle.

PROOF: By Eq. (3.13)

Exk[ il = (EE[ i])kxo[i]

Summing on k,

Exk[i] = (EI[i])kx[i] = U- E [i])Ix0[i] (3.16)

k=l k=l

since all eigenvalues of Ei[ i] have moduli less than one.

Let uk be any component of xk . Then Eu is a component of
O

Exk[i], and by (3.15), Eu < O. But by the Markov inequality,
Ik

k=l
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(3.14),

El Uki

Hence P[ I uk j I) '1 ] < for every 4 1 > 0, which by the Borel-Cantelli

lemma implies that Uk --r 0.

Therefore, given any 6 > 0, for all to, 11 x0fl < 6 implies

g(t, x0 , t 0 )---#0. Moreover, since the system is linear the convergence

to zero is uniform on 11 x0 11 < 6. Hence the trivial solution is quasi-

equiasymptotically stable almost surely. Also, for almost every w,

given any e > 0, to, there exists a T(E, 6, t 0;c0) > 0 such that 11x 11 < 6

implies 1 g(t, x0, t 0 ; ;) l <E for all t >t 0 + T. Now T is independent

of xo, 1lx 011 < 6, and g(t, xo, t 0 ;w) is continuous in x0; hence

max 11 g(t, X0, t0 ; W) 11 is continuous in x0. Therefore there
tot<t0 +T

exists a 6'(e ,t 0 ) >O, 6' < 6, such that 11x011 < 6' implies

11 g(t, x0 9 t 0;W)I <* for all t >t 0 +T (and also for t <t<t 0 + T
by definition of 6' and T). Consequently the trivial solution is stable

almost surely. (This also could have been derived by using the linear-

ity in x0, instead of using the continuity in x0 , of the solution function.)

Since the trivial solution is, in addition, quasi-equiasymptotically sta-

ble almost surely, it is equiasymptotically stable almost surely. Note

that the only reason the solution is not uniformly asymptotically stable

almost surely is that T depends on to, that is, the convergence to zero

is not necessarily uniform in t0 .

The converse of Theorem 3 is not true: Example 1 below shows

that the trivial solution can be almost surely quasi-asymptotically

stable although for all i, E [i] has eigenvalues outside the unit circle.

This is in contrast to Theorem 1 which states that asymptotic stability

in the ith moment is equivalent to having all eigenvalues of El[i]

inside the unit circle.
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3.3 Example I

Let tk tk. = T (fixed)

Ak= b1 < 0 with probability p

Ak = b2 > 0 with probability 1-p .

Then

b T
k= e with probability p

b2 T

Ik = e with probability 1-p

and

iblT
k[i] = e with probability p

Jk[ i] = e b2T with probability 1-p.

ib T ib 2 T

Hence EI[i i pe 1 + (l-p)e . By Theorem 1, the trivial solu-

tion is stable in the ith moment if and only if

ib 2 T
e -1

P ib2T iblT

e e

It is asymptotically stable in the ith moment if the above constraint is

changed to a strict inequality. These results are exhibited graphically

in Fig. 1. Note that the region of stability increases as b1 , b2 decrease.

This is to be expected for b 2 are the respective "time constants"

of the stable and unstable modes of the system.
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p
1.0

asymp. stable
z_- stable

b2  unstable
b2

b2 - b1

0 T

Figure 1
biT

It is interesting to examine the situation when b1 = -o) = e = 0,

T 0, with probability p. The curve in Fig. 1 delineating the region

of stability now starts at the origin and rises exponentially to one. But

for all p > 0, T > 0, the trivial solution is a. s. asymptotically stable

because the only realization that does not become zero as t----ao isbl T

the one where the "stable" mode e is never achieved and thus has

probability (l-p) = 0. However, it should be noted that for any p < 1,

there exists a positive probability that the trivial solution is unbounded;

for, given any bound M > 0, 11 x(t) 11 will exceed M if the system starts

in and remains in the unstable mode for a finite length of time.

3.4 Example 2

The time intervals tk - tk- 1 are of fixed length T. The system has

a double "pole" at a < 0 and b > 0 with probabilities p and 1-p, respec-

tively:

Ia  T 1

Ak = 0 a I with probability p

Ak = [ with probability 1-p

0 b
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The corresponding values of k are eaTB and e bT B where
BhT

K t) (-)

Figure 2

For example, the feedback control system shown above would have

a -1, b = 1 if the random gain K was equal to 4 or 0 with respective

probabilities p and 1-p.

Returning to the general case,

E I = (pe a T + (l-p)eb T ) B

B has a double eigenvalue at +1. Hence the eigenvalues of ET are

inside the unit circle if and only if

peaT + (1-p)e bT < 1,

that is, if and only if

bT
e -l•

e -e

in which case ExG = 0.

* Again,

E [ 2 = (ZaT + ( 1 p)eZbT) B[ 2
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Note that +1 is an eigenvalue of B of multiplicity two. Hence, +1

is an eigenvalue of B 12] of multiplicity four (see Appendix A, Eq. A. 5).

Moreover, it can be shown that its index is also four.

The eigenvalues of Ej 2] are inside the unit circle if and only if
2bT2

Te -I (3.17)

e -e

in which case Exk[ 2] "- 0 as ka_)co and the system is asymptotically

stable in the second moment. If (3.17) is changed to an equality, the

system becomes unstable in the second moment for EI[ 2] now has one

as an eigenvalue of index four on the unit circle. Figure 3 summarizes

the above results.
P

1.
[I]]

b

0 T

Asymptotically stable in the second moment: [I]
Unstable in the second moment: [2] - [5]
Ultimate mean zero: [1] - [3]
Ultimate mean infinite: [4] -[ 5]

Figure 3

Suppose a = -1 and b = 0. Then this example reduces to Example

I of Bertram and Sarachik 3 where by Lyapunov's second method, the

authors arrive at the result that p > l/(l-e T ) is a sufficient condition

for asymptotic stability in the mean. But Eq. (3.17) implies that if

a < 0, b = 0, a necessary and sufficient condition for asymptotic sta-

bility in the mean is p > 0. Indeed, by using the results of the next

section, it can be shown that the latter result is true even if the se-

quence {Ik} is any finite-order Markb6r chain with a nonzero transi-

tion probability of going from the unstable to the stable mode.
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IV. LINEAR SYSTEM WITH MARKOV PARAMETERS

Summary

The problem considered here is identical to the one treated in

Chap.III except that the succession of modes of operation of the random

linear system forms a Markov chain rather than just an independent,

identically distributed, random sequence. The differential equation,

as before, is

i=AkX, tk-1 <t <tk, k= 1, 2,

where x(t) is an n-vector and Ak is a constant n x n matrix. The system

behavior is completely described by the random sequence

(Ak(tk-tk-l)), here assumed to be a Markov chain. Sufficient conditions

for stability, and (exponential) asymptotic stability, in the ith moment,

are obtained. It is shown that these conditions without further qualifi-

cations are not also necessary. The dependence of the ith moment of

the solution function on the initial distribution and on the types of modes

(states) of the Markov chain is discussed. It is shown that the sufficient

conditions for asymptotic stability in the ith moment, i an even integer,

also imply almost sure asymptotic stability.

4. 1 Markov Chains

This section outlines some of the pertinent facts of the theory of

Markov chains. Unfortunately there exists no standard terminology in

the literature of Markov chains; a major purpose of this section is to

introduce the notation and terminology to be used later in the section.

Some general references on Markov chains are Bharucha-Reid, 29
30 31 3

Doob, Gantmacher, and Kemeny and Snell. 32

A Markov process is an indexed set {Zt, t 0. T<z(-o, co)}

of random variables such that for any integer n > 1, any set

{t 1 <t 2 <... <tn} of parameter values, and any real number a,
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P [z t < al z t  , ] -- P[Z < a Zt  (
n n-I 2 1 n n-i

If
P[ z t _a z l , ... Ztl al [ t a z t n 1 . . z t  ], n> ,

n n-i n n-n-
(4.2)

then {Z I is called a Markov process of order g. By definition, if thetterm Markov process is used without any qualifications, the order is

unity.

A random process is called a discrete or a continuous parametere

process according to whether the index set T is countable or not. A

random process is called stationary if for any tisZJS, i=1, ... ,

and any reala such that (ti+ a )eT, i = 1, ... , n, the joint distribution

of the random variables Zt , Zt+ "' Z  is independent of

oC for all finite n. The parameter t, sometimes, will be identified with

the physical variable time.

If the ranhdom variables Zt of a Markov process can assume values

only in some countable set D, the process is called a Markov chain;

the chain is said to be finite or infinite according as D is finite or

infinite. If D is taken to be a collection of modes * Di, the time develop-

ment of a particular sample function of a discrete parameter Markov

chain can be thought of as an evolution through the modes D. e D:3

''', Dl, D 2' D , .
J i 33

For a discrete parameter Markov chain {Z, n = 1, 2, ... }, given

an initial mode, the time development is completely described by a

set of transition probabilities

pij(,n) = P[Z n = D IZn. I = Di]

The standard terminology of Markov chain theory calls for the
use of the term "state" rather than "mode. " The term "state" is not
used here to prevent confusion with the state (vector) of the differential
system.
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specified for all n > 1, and all Di, D. , D. Of course,

Piji(n)> 0 and p.(n)= 1
j

where the summation extends over all modes in D. The matrix

P(n) = (pij(n))

is called a Markov, or stochastic, or probability, or transition, matrix.

Such a matrix together with a starting distribution

a. = P[z D.

completely specifies the chain. If pij is not a function of n, the chain is

called homogeneous.

Henceforth, unless explicitly indicated, the term Markov chain

will be used to denote finite homogeneous chains only.

If the elements of the kth power of the transition matrix of a Markov

chain are denoted by Pij

pk = (p(k)),
13

then

P(k) = P[ Zk =D. I Z~k 1 = D~i k > 1;

(k)that is, p is the transition probability of going from mode D. to mode
D. in k steps.

If for some finite k > 1, p)i > 0, then it is possible to go (i.e.,

with nonzero probability) from mode i to mode j (the modes will often

be referred to by their subscripts only), and this will be denoted by

i -- *j. If there exists no finite k > 1 for which p (k) > 0, that is, p ) = 0

for all k > 1, then the transition from i to j cannot occur and this will

be denoted by i-- *j.
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A transient set Or of modes is the set of all modes i to which

there correspond modes j such that i--*j and j* i. A nonempty set

of modes is called closed if for every i LX and every j K, i# j.

If the jth row and jth column of some Markov matrix are deleted for

all j A K where kis some closed set, the matrix remaining after

deletion is still a Markov matrix. A mode i is called absorbing if and

only if Pii = 1; if a closed set contains only one mode then this must

be an absorbing mode. A closed set &, of modes is called ergodic if

i--->j for all i, j p-, i. e., . is a closed set no proper subset of which

is closed. Every finite Markov chain contains at least one ergodic set;

the complement of the union of all the ergodic sets is the transient set.

If the set of all modes of a chain is ergodic, then the chain is called

erI~odic. A regular chain is an ergodic chain such that for all i, J,

p A- > 0 for aU n> N for some N. Every ergodic set can be parti-

tioned into classes C is 2 .
- d such that every one-step transi-

tion carries the chain from a mode in C 1 to a mode in C., from a

mode in & 2to a mode in C 31 "' from a mode in &d to a mode in

-1; that is, the system moves cyclically through the classes ... ,

e1' 1e 2' * * d' d 1.. ".. The integer d is called the period.

If d = 1 then the ergodic set is called aperiodic; if d > 1 then the set is

called cyclic. It follows that if _(n) > 0, i & 6, then n is an integerFii

multiple of d. It can be shown that there exists an integer b with the

property that for all i p , P(kd) > 0 for all k > b.ii.

By a renumbering of the modes of a Markov chain, the transition

matrix P always can be written in the form3 1

E 1  0 ... 0 0

0 E 2  ... 0 0

.... (4.3)

0 0 ... E 0e

.S S2  ... S T_
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E, EL, .. p, Ee are themselves Markov matrices and correspond to
the ergodic sets 1 , ' "i't -e of the chain. The matrix T

e
corresponds to the transient set. By a further reordering, any of

31the Markov matrices Ek can be written as

0 C1  0 ...

0 0 C ... 0

E : . . .... . 4.4)

0 0 0 ... Cd I

.Cd a 0 ... 0

where pij is an element of the matrix Cn if i e Cn"

4. 2 ith Moment Stability

As in Chap. Ill, the differential system is

SxAk, tk-l_< t - tk ,  k:l, 29 ... (4.5)

which, as shown in Eqs. (3.1) to (3.6), may be reduced to,

xk : Ik~kl,..lXo (4.6)

In this Chajer the matrix sequence { k1 is a Markov chain

with m possible modes X1 , ... , Xm, am initial probability distribu-

tion {a i} on the modes, and an m x m constant transition matrix
P = (pij):

a P11= Xi] P~=~k XIk= jai= [ 1 =  i] ii = PI Ik = Xi I k-1 = Xi]

It is required to evaluate explicitly all the moments of the output

vector process {xk} p in particular, the limiting behavior as k-),so.
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Now = -kXkl = kiklXkl. Hence, if xk and x.k are ob-

served, at say sample point w, they will delineate a subset RE of the

range = e x1, ... , X.) in which k must assume its value. i.
Ik'

in general, is not coincident with Since { ik ) is a first-order

Markov chain, tke distribution of Ik is conditioned on the subset

Hence (1k) is, in general, a Markow process of order > 1. More-

over, the range of {xk} is countable. So finally, {xk) it a homogeneous,
mnntationary, infinite Markov chain of order > 1.

Taking the expectation in Eq. (4.6)0

Ex k = El(k-. . 1 1)x.

which by the deA'ivation in Appendix D reduces te

Exk = q,(YI T k-l (4..7)

where Y1 is the direct sum of the Xi:

Y1 =  4D ... (D Xm;

is the square matrix of order inn:

ff= P 0 I, In = nth-order identity matrix;

0 11 is the mn x n matrix:

doI

and is the n x mn matrix:

m identities
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Equation (4. 7) gives the expected value of the sequence {Xk}. To obtain

the ith moment, take the ith self-Kronecker product of Eq. (4. 6) with

itself to obtain (as derived in Eqs. (3. 9) - (3.12))

xk[i] = Ik[i]''' 1[i]xo[i]

Hence

Exk[ i] = I i(YiQi) klYii xo[ i] (4.8)

where

Yi Xl[i] ... m[i]

Qi = P  I Ini

afi Co IIi ""'

n

m identitie s

If the Markov chain specializes to an independent process, Eq. (4.8)

gives the results obtained in the previous chapter, as is skown in Appen-

dix E. From Eq. (4.8), by using arguments similar to those in the

previous chapter. sufficient conditions for stability and asymptotic sta-

bility, in tke ith moment, can be found; that these conditions are not

necessary is demonstrated later.

THEOREM 1: (A) The trivial solution of (4. 5) is uniformly stable

in the ith moment if YiQ T has no eigenvalues outside the unit circle,
i
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and any eigenvalue on the unit circle basn index one. (B) It is uniformly
asymptotically (in fact, exponentially asymptotically) stable in the ith
moment if all eigenvalues of f jQj lie inside the unit circle.

PROOF: (A) By the assumptions on the location and the index of
the eigenvalues, it follows from the Lemma,Chap. III, that every element
of the matrix (Y 1 Q[)k is bounded uniformly In k. Hence

11i i(yiQ)kYai in bounded uniformly in k, i. e. , there exists an
M > 0 such that M = sup 11i A )Y 'QA' ie nya>0

k >1
choose 6 1 = 4 /M. From Eq. (4.8)

0 Exkl [ 5 1]1 1Yi(jQiY a iU1xoU]I <MI!xO[iJ IL. (4.9)

if 1 x[j < 6, then 11 Exk[j] g is less than i. But 11 x 0[ 1] It

is equivalent to 11 x011< 6 for some 6 > 0. Also 61, and hence 6, do
not depend on t 0 because the starting probability distribution is taken
to be independent of to.' Hence the trivial solution is uniformly stable

in the ith moment.

(B) Since all eigenvalues of 'Y Q T have moduli less than one, it
ST k

follows by the Lemma, Chap. III, that (Y A 0 as k--;mo. Hence
T k

YiiA) ~-40 as k-+m. Note, moreover, that the convergence
to the zero matrix is independent of to0 for the Markov chain is assumed
to be homogeneous with an initial distribution that is independent of
t 0 ' Therefore, given any 6 > 0, it follows from Eq. (4. 9) that for all
to, 11 zoo < 6 implies Exk[iI---00 as k---)oc uniformly in to, and uni-

formly on 11 x 11 < 6 (since the system is linear). Hence the trivial
solution is uniformly quasi- asym ptotically stable in the ith moment.

Moreover by (A) it is uniformly stable'in the ith moment. Therefore
it is uniformly asymptotically stable in the ith moment.

To show exponential asymptotic stability in the ith moment, take
norms in Eq. (4. 8) to obtain
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1 EXk~ l 11 gil II (_iQT)k' I II i ll 11 o[i]l1
and then use the fact that (YiQT)  converges exponentially to

0 as k--co. (See Theorem 2, Chap. III. )

DEPENDENCE ON STRUCTURE CF MARKOV CHAIN. The stability proper-

ties of the trivial solution are independent of the ordering of the modes.

They are, however, dependent on the transient and ergodic set struc-

ture of the chain and on the initial distribution of the modes. To demon-

strate this dependence, it will be convenient to assume that the transi-

tion matrix P of the chain is in the canonic form ( 4. 3) with the E matrices

in the form (4.4 ). In the stability study of a particular system, the

availability of P in a canonic form also facilitates the computation of

the eigenvalues of Y.Q.T , and further, by exhibiting explicitly the tran-
thesient and ergodic sets aids in the understanding of the problem under

consideration. In practice, of course, these advantages may be negated

partially by the labor required to reduce the given transition matrix to

a canonic form.

Suppose that P is in a canonic form. Also for algebraic convenience,

assume that there are two ergodic sets 61, 62 and a transient set '

Then Qi assumes the form
"E1 0 Ini 0 0

P i I n = 0 E z 0 1ni 0 (4.10)

1 40 n i S 2 01 n i T dD I n-

Let UI, U2 , ... , U m, be the modes ofFl, let VI. V2 ... , Vm

be the modes of E., and let W1, W2 ... , W3 be the modes of "-.
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Define

I - Uli] ... 0 m

1i M- Vli ' " @V i ]

Y!' WWi1i =(9~~'' Wm 3[ i ]

Then, by definition of Yip

Y .() * y!Z ) y(3)
i = i 1 1 '

whence

i (E I4 ni 0 i (S 5Ini

S(2) (T In Y(Z)(ST 4ni)
i 2  n - 2 n

0 0 Y( 3 )(TT In)

(4.11)

The structure of the matrix on the right-hand side of the above equation
shows that the eigenvalues of y l) (ET ini ), of y(2)(ET ,

i1 'i) 12 C

and of Y3) (T T @ ini) are the eigenvalues of YiQ . The computation
of the eigenvalues of Y. T has been reduced to the computation of the
eigenvalues of lower-order matrices.

If E 1 is a cyclic set, some simplification in the determination of the

eigenvalues of Yl) (El 4 Ini ) is possible. This is shown in Appendix

Is.

If the initial distribution {ai} assigns zero probability to all modes

not in f1 (or indeed, in any closed set of modes), then the system be-

havior must be independent of the values of pij, X, for all i, j f1"

For, . is a closed set; hence, by the choice of the initial distribution,
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the system can never enter any mode not in 1 In the case of the

ith moment this result can be obtained algebraically by noting that if

a. = 0 for all j $ ' then (Y1 QT ) k Yii , and hence Exk [i]' via Eq.

(4.8 ), is for all k independent of P.i X., for all i, j .

In addition to assuming that (ai} assigns zero probability to all

modes not in e9l, suppose further that every eigenvalue of

I I(E) is inside the unit circle. Then the trivial solution is

asymptotically stable in the ith moment. But by proper choice of
Y( 2 ), Y!) E 2 T, the matrices Y(Z2 * Ini) and T6 3 )(TT a Ii),

1 2 n'

and hence the matrix ViQi , certainly can have eigenvalues outside the
unit circle. Hence the converse of the preceding theorem is false;

namely, for the trivial solution to be asymptotically stable in the ith

moment, it isnot necessary that all eigenvalues of YiQ T have moduli

less than unity. Likewise, if the trivial solution is stable in the ith

moment, it is not necessary that no eigenvalue of Y Q lie outside the

unit circle and that any eigenvalue on the unit circle have index one.

Suppose now that all eigenvalues of YM1 )(EIT * Ini) and

Y( 3 )(TT G Ini) are inside the unit circle and that the elements of the

matrices are such that for some initial distribution the trivial solu-

tion is unstable in the ith moment. (This could occur if all elements

of all the matrices Vi, j = 1, ... , m 2 are greater than one. ) By

choosing an initial distribution which assigns zero probability to all

modes in & 2P that is, by choosing am1 +l , am1+2 , ... , am +m 2

the trivial solution becomes stable, in fact, asymptotically stable, in

the ith moment. This shows that stability in the ith moment and

asymptotic stability in the ith moment depend on the choice of the ini-

tial distribution {ai).

It is a fact that with probability one the chain remains in the tran-
30

sient set through only a finite number of transitions. Yet stability

in the ith moment and asymptotic stability in the ith moment depend,

in general, on Pij' Xis i .o. For, consider the simplest possible
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problem of studying the first moment stability of a first-order system

with one absorbing and one transient mode. The P and Y matrices

are assumed to be

P= T T>0 (4.12)

x 0
Yl 1 1 X 11 X2 >  0

O0 X2

Hence

YQT [Xi XS]I
0 X 2T

and

x k hk
(YIIT1 k

*(. Tk [ k k]
(Y:Q1 ) = 10 X 2 T

where hk is a function of X1 , X2 , S, and T. Using Eq. (4.8) to evalu-

ate Exk,

Ex k  (al x k + akhX + axkTk-l)
1 2k-i 2 2 X 2  x 0

which clearly depends on S, T, X 2 , and {al, a 2 ).

The results of the preceding four paragraphs show that if the chain

contains more than one ergodic set and possibley a transient set, then

it may be possible by changing the initial distribution on the modes to

make a stable trivial solution unstable and vice versa. Suppose now

that the chain is ergodic, that is, there is only one ergodic set and the

transient set is empty. The question arises as to whether (a) the
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convergence of divergence of Exk [i] with k depends on the initial dis-

tribution of modes; (b) the converse of the preceding theorem is true,

namely, is it possible to ensure stability, and asymptotic stability, in

the ith moment, by knowing the location and index of the eigenvalues of

Y Qf, if the chain is ergodic. The second question * is not answered

here. A partial answer to the first question is given by the following

example which shows that the value of Exk[i] for large k can depend

markedly on the initial distribution.

The example is as follows: The system is of order two, has two

modes, and tk-tk.l = 1 for all k> 1. The random matrix Ak can assume

the two values

] J, a fixed, = 2w or w.

Hence the two respective values of Ik - exp[ Ak(tk-tk.1)] are

X 1 = ea12  and X 2 = -e a12

where In is the nth-order identity matrix. Let the transition matrix

of the chain be

p 1-p

1-p p<p<I

Then

Y = e I (P T 12)1 (4.13)

(CiL T (cLT (.4
(e leL 12 )(p 0 12) , (e T ) LP 12 (4.14)

The answer to the second question is in the affirmative if the
chain is regular and all elements of X. are nonnegative. This case
will be considered in more detail in aJ later report.
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where

Equation (4. 14) follows from (4. 13) by the commutative property

(3. 11) of the Kronecker product. Using this commutative property

again,

(Y T 2  ((eaLPT) D 1)((LPTe a P T
(YQi ) = ) 4D '12)e~P

(ea LPT) 2 12 = e (2p-)I 2 S 12

It follows that

T = ek (2 p 1 )k 1

whence by Eq. (4.8)

E2k+l = e( 2 k+l) (2 p-1)k(a-a 2 )x0  (4.15)

Evaluating Ex2k+l in a likefashion,

Ex2k = eka(2p-1)kx 0  (4.16)

Hence if j is odd, Ex i depends on the initial distribution {al, a 2 }; if
j is even, it does not. Equations (4. 15) and (4. 16) show that the trivial

solution is stable in the first moment if

Ie 4FZ:T 1 (4.17)

(Note that + e J--1 are the eigenvalues of YiT which checks with

the results of Theorem 1. ) Equations (4. 15) and (4. 16) also show that
(4. 17) is, moreover, a necessary condition for first moment stability.

Likewise, (4. 17) changed to a strict inequality gives the necessary

-46-



and sufficient condition for asymptotic stability in the ith moment.

In exactly the same fashion it can be demonstrated that the trivial

solution is stable (asymptotically stable)in the ith moment if andonly if I < 1 (e p- -1 < 1).

4. 3 Almost Sure Asymptotic Stability

As in the independent case, there exists the following

THEOREM 2: The trivial solution is equiasymptotically stable
almost surely if for some even i, all eigenvalues of Y.QT are inside
the unit circle. (Compare with Theorem 3, Chap. IIl. )

PROOF: The proof is virtually identical to that of Theorem 3 of

Chap. Ill.
By Eq. (4.8),

Exk[i] (QT) k'lYax

Summing on k,

EXk[i] = Ii i "(y0QT)klyi.ix0[1 ]

k=l k=l

(I - Y QT )-lY a x[]= i(mn i  Yii)li ix0[ i]

because of assumption on the eigenvalues of Y QT
i i

The remainder of the proof is exactly the same as that of Theorem

3 of ChapUIL.

The converse of the above theorem is false as is shown by Example

1 of Chap I.

4. 4 Example

Consider the same system as in Example 1 of Chap.Ill but with a

Markov structure:

Ak can assume two possible values, b, < 0 and b. a 0; tk-tk. I = T
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i

for all k. Hence can assume the two possible values = •adX b 2 T  kX

and X 2 = e The transition diagram for the Markov chain is

Ps Pu

1 i-pu

with corresponding transition matrix

P- Ps 1-Psa

I- u Pu "

Since the system is of order 1, Q. = P, andX o0
10O Xi

Since all entries of the matrix are positive, it can be shown

that a necessary and sufficient condition for the asymptotic stability

in the ith moment is that every eigenvalue of Y.Q lies inside the unit
1 incircle. Solving for the eigenvalues

T _ i i fi Q T - XI X- X(psX + PuX )+ (1- p Pu)Xl 2 0i i as1l

The Schur-Cohn criterion can be used on this polynomial in X to

obtain Figs. 4-6 which show the regions of stability in the ps-Pu

plane. The line segment labeled "independent" in the figures is

the set of points (p Pu ) such that the Markov chain becomes an in-

dependent, identically distributed, random sequence.
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4. 5 Some General Comments

In both Chaps.JII and IV, the fact that the matrices Ik are of the

formiexp[ B] has not been made use of. Hence the results pertain

not only to piecewise constant differential equations but also to all

random linear difference equations xk . IkXkl , where { Jk) is an

independent, identically distributed, random process, or more gener-

ally, a finite Markov chain.

Such difference equations arise in the study of randomly sampled.

linear systems, whose second moment stability has been investigated6
by Kalman. Kalman considers the case where the successive sam-

pling intervals are independent, identically distributed, random

variables. This corresponds to the situation when { i k} is an inde-

pendent, identically distributed, random process. Kalman's method

consists of taking the expectation of the scalar product,

E <xk, xk>= E < kXk-i, kXk. >

E < 1k. lx0 Ik .5x0 0

E(x T i T ' ' 1k T k'' lXo)
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V

which leads him to the use of power product matrices. The method

is not as straightforward as the one presented here and suffers from

the limitation that it cannot be directly extended to the study of

moments of order > 2 , and to other statistical structures such as

Markov chains.

All of the rmterial presented in this section can be extended to

the case where { 10 is a multiple-order Markov chain. This ex-

tension will be included in a later report.

V. THE FORCED LINEAR SYSTEM

Summary

For random linear systems, a theorem is proven which gives

sufficient conditions on the input and on the solutions of the unforced

system, in order that solutions of the forced system be bounded in

the mean norm. The results of the theorem are immediately appli-

cable to the piecewise constant, linear system considered in Chaps.

III and IV.

The preceding chapters consider the stability, with respect to

changes in initial conditions, of a fixed solution function. Hence, the

input to the system is necessarily assumed to be fixed, usually at

zero. In practice, however, it is the behavior of the system in the

presence of any input, belonging to some class of possible inputs,

that is of interest.

For deterministic linear systems a common definition of sta-

bility is: the output to every bounded input is bounded. Because of

linearity this definition of stability is equivalent19 ' 33 to any of the

following properties of the unforced linear system: (i) the trivial

solution is uniformly asymptotically stable; (ii) the trivial solution

t

is exponentially asymptotically stable; (iii) " | W(t, T)i dT is

bounded in (t, t0 ), t > t o , 0
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where W(t, -r) is the fundamental matrix.

The following theorem partially generalises some of these results

to the random came:

THEOREM 1: Consider the vector differential equation

k= A(t)x + b(t), t > 0 (5.1)

where both {A(t)} and {b(t)) are random processes and stup 11 A(t) f is

a. a. bounded. For almost every w, assume that A and b are suffi-

ciently smooth 3 5 so that solutions of (5. 1) exist and are unique. Let

W(t, r), t, r > 0, be the fundamental matrix of the homogeneous equa-

tion (b a 0) which is normalized to W(t, t) = I, t > 0. Denote the solu.,

tion of (5. 1) by gb(t, x 0 , to). Now consider the following propositions

(Mi are finite positive constants independent of (t, to)):

(a) The trivial solution of the homogeneous equation is exponen-

tially asymptotically stable in the mean norm; or equivalently, there

exist two constants K, v > 0 such that

Eli W(t,t 0)f <Kexp[-v(t-t 0 )], t>t o.

t

(b) Y ElI W(t,T)U dT <Ml, t>t .

to.

I Tf v 11 h l1 < M. and b(til in statistically indeoendeint of



Proposition (a) states that the unforced system behaves, in the

mean norm sense, like an unforced, constant coefficient linear system

all of whose characteristic roots have negative real parts.

Propositions (c) and (c') are stochastic equivalents of the oft-

heard definition of stability for deterministic linear systems: to

every bounded input there corresponds a bounded output.

The theorem gives a partial justification for considering, in sta-

bility studies of random linear systems, the simpler unforced system

instead of the whole family of forced systems. This simplification, of

recognized value in the study of deterministic linear systems, is perhaps

of even greater value for random linear systems because of the more

complicated nature of the problem.

Before proving the theorem, consider the following

LEMMA: Proposition (b) of Theorem 1 implies that

IIW(t. t0 )D < M6 , t> t 0 0.

PROOF: The proof given below follows the one given by Kalman19

for the deterministic case.

The findamental matrix satisfies the homogeneous differential

equation:

d

a W(t, T) = A(t)W(t, T)

Hence

d W- t,T W W' T)W-l t,

= -w (t, T)A(t)W(t, T)Wl (t, T)

= -w (t, T)A(t)

On interchanging t and T,

dW (T,t)= -W' (Tt)A(T)
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from which it follows that

d
dT- W(t, -r) = - W(t, T)A(T)

since W- 1 (T,t) = W(t, T). Integrate with respect to T, use the fact

that W(t, t) - I, and then take norms:yt
W(t, t0 ) - I = Wt, t )A(T)dT

to
t

II W(t, t 0 ) - Ill S 0I W(t, T)Il II A(T) 1 dr
w0

_< [a. s. sup(sup II A(t)ll )] C' II W(t, T) II dT

Now 11 W(t, t 0 )I < fl W(t,t 0 ) " III + 11 Ill. H~nce, upon taking expectations,St
Ell W(t, to)II <[a.s. sup (sup IlA(t)Il )] E 11 W(t, T)I1 dT + Eli Ill

t>O 0

< [a. a. sup (sup 11 A(t)I )] M1 + 11,11
t>o

Hence Ell W(t, t 0 )I1 is bounded in (t,t 0 ), t> t o .

PROOF of Theorem 1: To show (a)= (b).y t t

El W(t,T)l1 dT < Ke-vIt-r)dT < K
to 0

To show (b) (c) . The solution of (5. 1) can be expressed as

yt
gb(tx 0 t 0 ) W(tt 0 )x 0 + W(t, )b( ) dT

to
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which upon taking norms becomes
t

11 gb(t, x0 t0 )ll < 11 W(t, to) l 1 xol + S ii W(t, r)I H b(T)jj dT

(5. 2)

Since {A(t)} and {b(t)) are independent,

Eli gb(t, x0 t0 )i <Eli W(tt 0 )lI ii x
t

+ El W(t, r)11. Eli b(T)li dT.

to

By the preceding Lemma, Ell W(t, t 0 )1l <M 6; and by hypothesis,

Eli b(T)I <M 2  Hence t

Ellgb(tx 0 ,t 0 )ll <M 6 11x0 1 + M 2 St 0 El W(t,T)1 dT

<M 6 11 xoU + M2 Ml

=M 3(Ml , 1I xol1)

To show (b) :::!(c'). From inequality (5. Z)

II gb(t, x ' to) < W(t, to) 1l xO 11 t

+ [a. s. sup ( sup I b(t)ll )] S11 W(t, T)l11 dT

Therefore,

Eli gb(tx 0 ,t 0 )l <Eli W(t, t0 )l 1 x0l1 + M4 5t Eli W(t, )Il dT

0

whence by the preceding Lemma, and by (b)

Ell gb(t, x0 , t 0 ) l <M 6 11 xo + M4 M1

= M 5 (M1 , II xoll )
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The results of the preceding theorem are immediately applicable

to the random linear differential system considered in Chaps. III and IV.

The vector differential equation now becomes

=Akx + b(t), tk.l <t< tk, k= 1, 2,... (5. 3)

Suppose that the trivial solution of the homogeneous system is exponen-
tially asymptotically stable in the ith moment for some even i. Then,

as shown in Chap. II, it is exponentially asymptotically stable in the

mean norm. Hence, by the theorem just proven, it follows that

If for the differential system (5. 3), the trivial solution

of the homogeneous system is exponentially asymptotically

stable in the ith moment for some even i, then

E l gb(t, x0 , to) 1 is bounded uniformly in (t, to) for all
bounded x 0 , provided either

{b(t)} is statistically independent of

{Ak(tk-tk-l)} and El b(t) l is :bounded uniformly

in t,

or

{b(t)} is a. s. bounded.

APPENDIX A

KRONECKER AND POWER PRODUCTS OF MATRICES*

In the definitions and identities that follow, except for finiteness,

no assumptions about the dimensions of the matrices are made unless

indicated explicitly, or implied by the use of operations such as in-

verse, trace, determinant, the conventional sum A + B and product

AB, etc.

KRONECKER PRODUCTS

If A and B are ma.trices of order a and P, respectively, of the

transformations

For a concise statement of the properties of these products,

see MacDuffee, 22 Chap. VII.
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'i= 2.1jl a1 i -j (A. 1)

j=1 j=1

the product vector (column)
I I I I I I I I

(R I i l ' i n 2 ' ' '  C l r , n2 '9 1 ' 22 7" ' P2q 3 ' '  Ca L I3 A 2 )

is a linear transform of the corresponding unprimed product vector

(column)

where the linear transformation is given by the Kronecker (or direct)

product matrix:

a11B al2B ... al B

aziB azzB a za B

alB aaB ... a B

DEFINITION: Given an a x a 2 matrix A = (ai) and a 1 x

matrix B = (bij.), the Kronecker (or direct) product of A by B is the

a1Pl x a 2  2 matrix

1 ~l2

a all1B .. alIa 2B

The product is associative

(A 0 B) d C = A 0 (B 0 C)
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from which follows the definition of the ith self-Kronecker product:

A[i] - A®... ®A

to i factors. It obeys the relation

AB A -A[i]B i] (A. 4)

In fact, the more general identity

A1B 1 0 A2 B 2  A.. ® AB i = (A, 4D A 2  4D. A,) (B I Z B 2 ®.. B i )

holds, from which it follows that if
Ax X.x. Byj - , yjAx i = 1

then

(A D B)(xiOyi) = Ax i  Byj = X .x. j jyj = Xij(xia yj), (A. 5)

that is, if Xi and Vj are eigenvalues of A and B, respectively, with

corresponding eigenvectors x. and y j, then A ( B has the eigenvalue

X v. with.the associated eigenvector x. 0 y."

Most of the following identities are readily verified:

(a) (A + B) 0 C = A + B C

(b) (A@ B)T = AT BT, T denotes transpose.

If A and B are matrices of orders a and P, respectively,

(c) trace (A ® B) = (trace A)(trace B)

(d) det(A 0 B) = det(AP)det(B a )

(e) A B = (A QI P)(Ia I B), Ia = identity matrix of order a

(f) (A ® B) "° = A "1 i B-1

(g) (L 1 0 M 1 )(A 0 B)(L 2  M 2 ) = A1  BI ,

where L1AL 2 = A, and M1BM 2 = B1
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(h) (L 0 M)' (A B)(L M) = A1 4 B1 ,

where L1 AL = A, and M1 BM B1

POWER PRODUCTS

In (A. 1), let the two transformations be identical. Then the

(l/2)a(a+l) distinct products

g2 , 'g2 g g g2

are related to the corresponding unprimed products by a transformation

whoge matrix A(2 ) is called the second power matrix of A. In symbols

x' ,X x' = (A -X A)(x 'X x)

X( 2 ) = A( )x(2)

wherex= l' "''' ) and x'=( I..'' a )

The ith power product of x is similarly defined as the vector x(i)

having as components the (a +i1 ) distinct ith-degree products of
o

components of x, arranged in the lexicographic order. x(i) and x!G)
are again linearly related:

(i) A(i)xi

where A is the matrix of the linear transformation.(i)

The lexicographic ordering, of the components of x, is merely a

convenient one. If some other ordering is used, the rows and columns

of A M will be correspondingly permuted.

The Kronecker and power products have several similar properties.

In particular, the following theorems hold:

(a) AB(i) = A(i) B(i)

If Ais of order a, then

(b) det A(i) = det(AJ) )
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and

(c) A(j) has as eigenvalues the ( products of the

ith degree of the eigenvalues of A.

APPENDIX B

A MODIFIED HOLDER INEQUALITY

Let Zi, j = 1, 2, ... , n, be scalar random variables. Then

i. i /i
E I Z.3 f < H(E z' (B. 1)

= i, i. > 0 for all j

PROOF: In the case of two random variables X1. X2, there exists

the well-known Hblder Inequality 2 1

EIX X (.XrI I )I/r1(. 1 rE2 1) 2 (B.2)

1 1

S+ -- r, r > 0

Under the substitutions XI = Uj , X 2 = V k , l/r = j/(j+k),

1/r 2 = 1 - 1/r 1 k/(j+k), (B. 2) becomes

El ujvkl <(El uj+kI ) j/(j+k) (El vj+kI )j/(j+k) (B.3

j, k> 0

k k, k2  TeLet V = Z 1 Z 2 , k + k 2 = k, kl, k 2 > 0. Then

kt  k2vJ+k =Z-k (j+k) -- (j+k)
1 Z 2



note that the sum of the exponents of Z and Z 2 is (j+k).

Upon substituting for V, (B.3) becomes

klk _ (j+k).(J+k)
(El uJz1z 2 21) < (E Iuj+kI) (EI Z I)

Now apply inequality (B.3 ) to the extreme right-hand term in the

above inequality to obtain
kkk I  k 2

uzIz21) <:E5 uJ(El zj+k)i ' k (El T7 'k)J77

which can be successively generalized to (B. 1).

APPENDIX C

SOME THEOREMS ON ALMOST SURE AND ALMOST UNIFORM-

IN-w TYPES OF STABILITY

Theorems 1, 3 and 4, relating almost sure and almost uniform-

in-w types of stability are proven. The proofs are modeled after those

of Egoroff's Theorem (for finite measure, convergence almost every-

where implies almost uniform convergence) and its "converse"

(almost uniform convergence implies convergence almost everywhere).

THEOREM 1: The trivial solution of the differential system (Z. 2)

is stable almost surely (A) if, and (B) only if, it is stable almost uni-
formly-in-w.

PROOF: (A) By hypothesis, given any positive integer n and any

to, there exists an w-set Bn(t0 ) with PBn > 1 - 1/n, and given any

E > 0, there is a corresponding 6(f, n, t0 ) > 0 such that 11 x 0 j < 6

implies that 11 g(t, x0 , t 0;w)1 <* for all t >t0 and all we Bn

Let S = Bn n Then for every n, S- Bn and
n=l

PS > PB >1 - 1/n. Hence PS = 1.
-- n
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To show that the trivial solution is stable for all realizations

corresponding to the points of S = S(t 0 ), choose any w' 6 S. Then

W16 B k for some k = k(w') whence for any t0 and any E > ,

I x0f1 < 6(,, k(d'), t o ) implies that 11 g(t, x 0 , t 0 ;&')I <* for all t > t o .

Given any other initial time t 0 , S(t 0 ) can be taken to be S(t 0 ).

For, if the trivial solution of the deterministic system correspondingI

to WeS(t 0 ) is stable at to, it is stable at to that is, given any s > 0,

there is a 6(c ,t 0 ,9) > 0 such that 11x 0 11 < 6(E,t ,w ) implies

IIg(t, Xo, t0 ;W)II <E for all t > t'. Hence there is a set S of unit pro-

bability on which the trivial solution is stable at every t0 ' Therefore

the trivial solution is stable almost surely.

(B) by hypothesis, there exists an w-set S of unit probability,

and to every w0 p S, every positive integer m, and every to, there

corresponds a positive integer In (in, w, t0 ) such that fl x o I < 1/u

implies I1 g(t, x0 , t 0 ;W)II < 1/in for all t >t 0.

Given any to, let

Eg(t)=E(t, = ' <1

nn o

for all t > to , m, n = I,,...

If w F S. then for every in there is an nl(m, w, t o ) > 0 such that

W Em . Therefore U En D S, whence P U Emn = 1. Sincenl n n n n

EICE CE '. ... , lim PE = 1, and given any i > 0 there
n n

)I
exists a smallest integer N(m, vi, t ) such that PEm > 1 i/

Defnine B = En Note that B depends on i and tO only.
m N0

pB c = p (E Nm ) c< p ( ENM) < 1"7 =

m m

Hence PB > 1 - I. Moreover, for the t0 chosen above, if w' s B, then
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w'sE for all m so that x0  < l/N(m,-,t 0 ) implies

I g(t, x 0,t 0 ;w)II <1/m for all m and for allt >t o ' Therefore the trivial

solution is stable almost uniformly-in- .

THEOREM 3: The trivial solution of (2. 2) is quasi-asymptotically

stable almost surely if it is quas-asymptotically stable almost uni-

formly-in- w with the set B (see definition (ilu-f), Sec. II) independent

of x 0 .

PROOF: By hypothesis, given any integer n > 0 and any to, there

is a 6(n, t0 ) > 0 and an w -set B (t0) with PBn > 1 - 1/n such that
SXo < 6 implies that g(t, xo, to;w) ---- 0 as t---> o uniformly on Bn .

Let S(to) = U B(t 0 ). Then for all n, S(to)=)Bn(tO) and

PS(t 0 ) > PBn(t0 ) > 1 - 1/n. Hence PS(t0 ) = 1.

Given any w . S(t 0 ), w is an element of Bk(tO) for some k = k(w).

Hence at to, 11 X0 1 < 6(k(w),t 0 ) implies g(t, xo, t 0;w)-40 as t-- oo;

i. e., the trivial solution is quasi-asymptotically stable almost surely

at t o . As in the proof of Theorem 1, S can be taken to be independent

of t0 • This completes the proof.

THEOREM 4: The trivial solution of (2. 2) is quasi-asymptotically

stable almost uniformly-in-w if it is quasi-asymptotically stable

almost surely.

PROOF: By hypothesis, there exists an w-set S of unit probability

and to every w & S and any given t0 , there corresponds a positive integer

(w, t0 ) such that 1j x0 11 < I/R implies g(t, x 0 , t0 ;w) --+0 as t-- oo.

Given any to, let

Fn(t0 ) = Fn = {w: x Xo < - g(t, xo, to;w)--,O as t--) o),

n = 1, 2,..

Pick w a S. Then w , F- and hence w r. U F • Therefore
n(w,t n n

U F Z Swhence P U F = 1. Since FI FC F 3  lira PF 1.
n

Hence, given any 11 > 0 there is a smallest integer N(q, t 0 ) such that
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PFN >I - Tv/2.
For every x0 , II xol < I/N, define

t m :11 g(t 0  oI <1 for all t > t +
k= E k 0 Xgt m -0

m, k = 1, 2, ...

If w iF_ then for every m there is a k1 (m, W, x., t ) such that
;N' m whne 0 m

W , E . Therefore Ek F whence P E >I - q/2.
Since E, E E ........ im E > 1 - i/2 and there exists a

S ie k k1E

smallest integer K(m, ?, x 0 , to) >0 such that lim PEk - PEm<((/2/2m
k

from which it follows that PEm > 1 - (TI/Z)(1 + 1/2m).

Define B = 1 Em and note that B = B(,x 0, t0 ).
m K

PBc= P V (Em)c < P(EK )c< 7 1i+ 1

m m

Hence PB >1 - il. Moreover, if w' & B, then w'SEKm for every m so

that 0 xO 11 < I/N(%], to) implies 1 g(t, x 0 , to; w') 11 < I/m for all m and for

all t > t0 + K(riij il, xo, t0 ). Therefore the trivial solution is quasi-

asymptotically stable almost uniformly-in- w

APPENDIX D

E(!kI k-l'. F 1) FOR MATRIX VALUED MARKOV CHAIN { k'

Given a finite Markov chain with initial probability vector

(a,, ... , am) and an m x m constant matrix P = (p.j) of transition

probabilities, associate with each state i an n x n matrix, X1 . Let k

be the random matrix occurring at time k, k = 1, 2, .... The

expected value of the product matrix fk lk-l" " 1 is derived here.

For notational and algebraic simplicity consider a four-fold

product. Then
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E141 3 2 11 = lXXkXjXiaiPijPjkPkf

i, J, k, f=1

XX k  ( XjPijpjk) XiaiPkf (D. 1)

i, k, I

Let I be the identity matrix of order n and define Q as the Kronecker

product

Q=PQ) I

and Y as the direct sum

Y-=-X X 2 a... DX m

Then

U = OTYQT (D. 2)

pllI  P2 11 ... 1  0 ... pllI  P2 11

S 1 P221 ... 0 X2  P1 21 p2 I

p121 22I 22

[P l XI lp l + p2 1X 2 P1 2 + "'" plX IP 21 + p21X2 P2 2 + ... 1

= p 2 X1p11 + P2 2 X 2 P1 2 + "'" P1 2 X1p 21 + p2 2 X2 P2 2 + .....

[U ik] (D.3)

where U ik is the matrix entry in row i and column k. The parenthe-

sized term on the right side of Eq. (D. 1) can be identified as Uki so

tkat (D. 1) becomes
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El 4 f312!1= X1 I ( XkUkiPkI Xa i  (D.4)

i, 1 k

By steps similar to (D. 2) through (D. 3),

X k U kiPl = Vi

k

where

V= [vi] -QTyu (D. 5)

Equation (D. 4) now reduces to

E1413=211 x, VXa i  (D.6)
I i

Let a be the Kronecker product of the initial probability vector with

the identity:

Let W = VXa i and let W be the matrix

W =VY6. (D. 7)
W M

Equation (D. 6) now becomes

E F4 1 3  1 1-1. -- f x A YW (D. 8)
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r where

m term@

Substituting successively for W, V, U by using (D. 7), (D. 5), (D. 2)

respectively, (D. 8) reduces to

E4132 1 : 'I(yQT) 3 Y

which can be successively generalized to

E( F k .k-l' 1) = %(yQT)k-ly4 _

APPENDIX E

SPECIALIZATION OF MARKOV CASE TO INDEPENDENT CASE

In Chap.III, Sec. 3. 2, it was shown that if

k lk 1 x 0

with { 'kI an independent, identically distributed, matrix sequence,

then Exk [i] = (Ef [i])kxo[i] . In this appendix, this result is derived

as a special case of Eq. (4. 8):
l

Exk[ i] = T L.yiaXoi

which is the result when { 1k) is a Markov chain.

If I 1k ) is an independent process, then the Markov matrix

has identical rows: Pij = PJ = P.. k = Xj] for all k. Hence YiQT

has the form
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P1X 1[ 1] P x 1[ 1 ] ... PIX1[i]

TI

[ PMXM[j Pmi] Pm Xm[i] PMM

Also a. p. whence

[pm Xm[ i]

Therefore,

I l l] [i]
T Y.

L Pmxml iEl]

and

and, in general,

(YQTAky i

SPmXm[ 
i](E k[i]
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where

E [iI E l pixj[i]

Equation (4.8) now reduces to

Ex k[ i] = (E I[ii) kx0[ i]

which is the desired result.

APPENDIX F

COMPUTATION OF X (Yi Q T ) FOR CYCLIC CHAINS

Suppose that the Markov chain is ergodic; that is, there is only

one ergodic set and the transient set is empty. Suppose further that

the ergodic set is cyclic, of period d. The modes are assumed to be

suitably ordered so that the transition matrix E has the form (4. 4):

O C1  0 ... 0

o o C2  ... 0

E-

0 0 0 ... Cdl

.Cd 0 0 ... 0

Hence the Y matrix has the form

Y. = X! ) a ... a X~d )

wherex!J) is the direct sum of the matrices X,[i] corresponding

to the modesi £ a Y
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YQT Y.(ET 

can now be written as

0 0 ... 0 F d -

F1  0 ... 0 0

TYiQi = 0 F 2  ... 0 0

S 0 .. Fd 1  0 _

where

F i n i ) j=1, ... , d,

provided X.d + l ) is interpreted as X.
1 1

Raising YiQ T to the dth power,

(YiQ i) = FIFdFd 1 ... F 2 $ F 2 F1 Fd Fd- F 3 d... 4FdFd-l 2F V

All of the cyclic products of the F.'s on the right-hand side of the

above equation are square, but not necessarily of the same order.

Moreover, by Lemma 1 proven below, all of the cyclic products have

the same eigenvalues, except possibly for the zero eigenvalue. Hence

the nonzero eigenvalues of Y.QT are the nonzero eigenvalues of any

of the cyclic products. Since only the nonzero eigenvalues of YiQi

are of interest, a convenient way to compute them is to compute the

eigenvalues of the lowest order cyclic product.

LEMMA 1: Let A., j = 1, . . . , k, be matrices of dimension

n. x nj+1 with n = nk+l. Then all the cyclic products AA..... Ak,
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A 2A 3... AkAl Ak* ... Ak-2Ak-I have the same eigenvalues,

except possibly for the zero eigenvalue.

The proof follows from

LEMMA 2: Let A be an r x s matrix and let B be an s x r
matrix. Assume, for convenience, that r > s. Then,

(a) AB and BA are of dimension r x r and s x s respectively;

(b) zero is an eigenvalue of AB of multiplicity at least (r-s);

(c) every eigenvalue of BA is an eigenvalue of AB.

PROOF: (a) Follows from the definition of matrix multiplication.

(b) Let N be the r x (r-s) matrix all of whose elements are zero.

Define , N to be the matrices

X = [A,N] I = TI
N

Then

-AS = AB

= LBA 0]

By inspection, zero is an eigenvalue, of multiplicity (r-s), of B .

But the products X T, M X have the same eigenvalues since X and 9
are square matrices. Therefore, zero is an eigenvalue, of multi-

plicity (r-s), of AB (= -AT), and

(c) every eigenvalue of BA is an eigenvalue of AB.
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